
9th Thermal and Fluids Engineering Conference (TFEC)
April 21–24, 2024

Partially online virtual and in person at Oregon State University, Corvallis, OR, USA

TFEC-2024-50751

MACHINE-LEARNED TURBULENCE MODEL FOR TOPOLOGY
OPTIMIZATION-BASED HEAT EXCHANGER DESIGN FRAMEWORK

Mitansh Tripathi,1 Botao Zhang,2 Vysakh Venugopal,2 Navaneeth Chandran,2 Logan Ware,3 Niloofar

Sanaei,3 Sam Anand,2 Prashant Khare1,∗

1Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH 45221±0070
2Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221±0072

3Eaton Research Laboratory, Digital Design & Engineering, Eaton Corporation, Southfield, MI 48076

ABSTRACT

Due to limitations imposed by manufacturing processes, heat exchanger designs previously were composed

of tubes and fins (and several variants of these two geometric shapes). Recent advances in additive man-

ufacturing techniques have led to the use of multi-objective topology optimization (TopOpt) to generate

ºorganicº heat exchanger designs that satisfy mission-specific requirements. TopOpt-based heat exchanger

design frameworks were initially developed assuming laminar flow. However, for a multitude of applications,

the gaseous flow is often turbulent. The purpose of this paper is to develop a machine-learned (ML) model

that can be incorporated into a TopOpt framework to design heat exchangers. Specifically, design inputs in-

clude domain size (10º× 10º), temperature, and flow rates of hot (80 o C, 11 L/min) and cold fluids (55
oC, 67 m/s) and constraints based on energy density, pressure loss, and manufacturability. The hot and cold

fluids are an aqueous solution of 50-50 ethylene glycol and air, respectively. A ML-based turbulence model

is developed by first simulating the flow and heat transfer on 10 preliminary heat exchanger designs using

two-equation, realizable κ − ϵ-based steady RANS (Reynolds-Averaged Navier-Stokes) calculations. Then,

a Gaussian Process machine learning model is trained to calculate the turbulent viscosity using area density

as the input variable. The model is validated by performing an RANS calculation using a 0-equation eddy

viscosity model with the eddy viscosity predicted by the GP model and comparing it with the test data. The

outlet temperatures of both calculations were within 2% of each other. The next step is to incorporate this

model into the TopOpt framework.

KEY WORDS: organic heat exchangers, turbulence modeling, machine learning, Gaussian Process, topology opti-

mization, additive manufacturing

1. INTRODUCTION

Heat exchangers are essential devices widely used in various industries to facilitate the transfer of thermal

energy between two fluids while maintaining a clear separation between them through the use of a solid

barrier. These devices find applications in scenarios such as engine cooling, refrigeration, and many others

[1]. This paper specifically discusses heat exchangers involving two fluids in which there is no phase change

involved, such as condensation or evaporation. In such heat exchangers, the primary mode of heat transfer is

forced convection, which refers to the process in which the movement of fluids is driven by external means,

such as pumps or fans, to enhance the transfer of energy from the hot fluid to the cold fluid. Analysis of such

devices requires a coupled solution of the processes that govern the flow of the two fluids and the conduction
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of heat within the solids, which is also called conjugate heat transfer (CHT).

In a heat exchanger, energy from the hot coolant is convected to the inner surface, which is then conducted

through the solid walls of the heat exchanger to its outer surface. Subsequently, the cold fluid convects the

heat away from the outer surface. The coolant then recirculates to extract more energy from the component to

be cooled.

Contemporary designs consist of relatively simple configurations such as shell and tube-type and fin and

tube-type heat exchangers. The fin and tube designs represent the cutting edge in compact heat exchanger

technology [2]. Various techniques have been explored to enhance their efficiencies, including altering the

geometry of the fins, adjusting the spacing between components, or incorporating vortex generators. One

such approach involves employing wavy fin arrangements to increase the surface area of the heat exchanger,

resulting in a longer airflow path and facilitating extended interaction between the air and the heat exchanger.

In another method, vortex generators are strategically placed on the fins to induce turbulence. This approach

significantly enhanced the mixing, leading to enhanced heat transfer[2]. Numerous research efforts have been

extensively documented in the literature to improve the efficacy of conventional heat exchangers [3±6].

It is well known that conventional heat exchangers are not the optimum designs to extract energy from a

system; however, due to the constraints imposed by manufacturing processes (e.g. cost constraints of mass

production), industries for most of the last century have relied on simple designs. However, recent advances

in additive manufacturing techniques have the potential to revolutionize the design of heat exchangers. An

emerging design technique, Design for Additive Manufacturing (DfAM) combined with multiobjective topol-

ogy optimization (TopOpt), is increasingly being used to design components to achieve specific objectives,

including the design of heat exchangers [7±11].

Fig. 1 Flowchart of the overall DfAM TopOpt framework.

In the current research effort, we are

developing two-fluid ºorganicº heat

exchanger designs using DfAM and

TopOpt that maximize the heat ex-

traction from the hot fluid, given the

domain size, temperatures and flow

rates of the two fluids, allowable pres-

sure drop, weight and constraints im-

posed by the additive manufacturing

processes. The word ºorganicº refers

to a situation where the shape of the

heat exchanger is not known a priori.

The process of getting a final topologi-

cally optimized design is to start with a

black box and the final heat exchanger

is built with each successive iteration.

In essence, the Navier-Stokes equations

become a part of the objective function,

which generates heat exchanger designs for the given constraints using TopOpt based on density [12]. For the

Reynolds numbers of interest, the hot fluid (a liquid) is in the laminar regime, whereas the cold fluid (air) is

turbulent. A major challenge in the formulation is to model the turbulent flow of air as an objective function

of the optimization algorithm. While there are sophisticated techniques to accurately model such flows such

as direct numerical simulations [13] and large eddy simulations [14±16], to make TopOpt computationally

tractable and ensure that it converges to a solution, closure based on Reynolds average Navier-Stokes (RANS)

is adopted in the current algorithm. Among several RANS-based closure models, we use the zero-equation

eddy viscosity model, which requires estimation of the turbulent viscosity µt. There are several ways to eval-

uate µt (e.g., mixing length) [17], however, since the geometry is not known, it is difficult to estimate it. To

mitigate this issue, we use machine learning-based turbulence closure, the topic of discussion in this paper.
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For context, figure 1 shows the flow diagram of the overall algorithm. In the first step, several preliminary

designs encompassing the operating envelope are generated assuming that both the hot and cold flows are

laminar. These designs are then analyzed using the k − ϵ turbulence model. An outcome of this analysis is

the spatially averaged turbulent viscosity and the corresponding area density in the domain of interest. Next, a

Gaussian Process (GP) machine learning algorithm is trained which predicts the turbulent viscosity for a given

area density. This model is then incorporated into the TopOpt algorithm to generate heat exchanger designs.

Further details of the DfAM and TopOpt algorithms can be found elsewhere [18].

The rest of the paper is organized into four sections. Sections 2 and 3 detail the mathematical framework and

experimental validation. Section 4 discusses the results, which include the process of generating the training

data, the development of the machine-learned model, and the comparison between the ºtruthº (k− ϵ) and the

flow physics predicted by the zero-equation RANS model that uses the turbulent viscosity predicted by ML at

the test points. The main conclusions of the study are drawn in Section 5.

2. MATHEMATICAL FRAMEWORK

The equations governing the conservation of mass, momentum, and energy based on the incompressible form

of the zero-equation RANS turbulence model that is used as the objective function in the TopOpt algorithm

are summarized below.

∂Ūi
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Here U is the mean velocity vector, P the pressure, ρ the density, α the thermal diffusivity, and the quantity

ρu′

ju
′

i is the Reynolds stress tensor. The strain rate tensor is given by Sij = Sji and is given by

Sij =
1

2

(

∂Ūi

∂xi

+
∂Ūi

∂xj

)

(4)

In a zero-equation, eddy viscosity-based turbulence model, the turbulent stress and other fluctuating compo-

nents can be expressed in terms of turbulent viscosity (µt) given by:

ρu′

ju
′

i = µtSij (5)

u′

jT
′ =

µt

ρPrt

∂T

∂xi

(6)

where µt is the turbulent viscosity and Prt is the turbulent Prandtl number, which is taken to be 0.9 based

on standard values and justified by the turbulent theory [19]. There are several ways to estimate µt, which

is the only term that needs to be closed. To be as accurate as possible and to eliminate the errors introduced

by assumptions that underlie various closure models, we conducted ºhigherº fidelity realizable k − ϵ-based

calculations using Star CCM+ and extracted turbulent viscosity (an output of the k − ϵ calculations) over the

range of geometries of interest and trained a machine learning algorithm (discussed in Section 2.1 to predict

the spatially averaged turbulent viscosity given a surface density that is used to close the last two terms of

equations 2 and 3. The governing equations for the realizable k − ϵ [20] model are as follows:
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Here, Gk and Gb represent the production of turbulent kinetic energy due to mean velocity gradients and

buoyancy, respectively. Sϵ and Sk are user-defined source terms while C1ϵ and C2 are constants. C1 =
max[0.43, η

η+5
] where η = Sij

k
ϵ

. σϵ and σk are turbulent Prandtl numbers for ϵ and k. Once the transport

equations are solved, the turbulent viscosity is given by

µt = ρCµ

k2

ϵ
(9)

The model constants are: Cµ = 0.09 C1ϵ = 1.44 C2 = 1.9 σk = 1.0 σϵ = 1.2 [17]. The computa-

tional domain comprises of three subdomains: air, EGW (50% ethylene glycol - 50% water), and aluminum,

which is the material of choice for the heat exchanger. The Reynolds number corresponding to the flow of

cold air is 7.28× 105, while for EGW it is 3.07× 103.

2.1 Gaussian Process Model

Gaussian Process (GP) is a Bayesian-based supervised learning approach. It is defined as a collection of

random variables, any finite number of which has a joint Gaussian distribution [21]. It predicts an output

y, given an input x based on n observations. The GP framework used in this research effort is based on our

previous work on using GP to model spatiotemporal fluid dynamic processes [22, 23]. A GP model is specified

by its mean and covariance functions given by:

f(x) ∼ GP(m(x), k(x, x′)) (10)

Where m(x) is the mean function and k(x, x′) is the covariance matrix. The aim is to find a corresponding y∗
value for a given input x∗. For this purpose, the covariance function is calculated as follows [21].
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...
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...
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(11)

K∗ = [k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)] K∗∗ = k(x∗, x∗) (12)

The desired output y∗ is given by:

[

y
y∗

]

∼ N
(

0,

[

K KT
∗

K∗ K − ∗∗

])

(13)

Then the conditional probability p(y∗|y), that is, the likelihood of the predicted value y∗, given all the data

points y is given by the following expression:

y∗|y ∼ N (K∗K
−1y, K∗∗ −K∗K

−1KT
∗
) (14)

The predicted value, y∗ and its variance is given by:

y∗ = K∗K
−1y var(y∗) = K∗∗ −K∗K

−1KT
∗

(15)
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Table 1 Operating conditions for the validation cases.

Air Water

Inlet velocity (m/s) 0.25, 0.36 and 0.46 0.76

Inlet temperature (oC) 22 40

3. MODEL VALIDATION

Fig. 2 Schematic of experimental setup [24].

To ensure that relevant flow physics and heat

transfer mechanisms are captured, the realizable

k − ϵ-based calculations are used to simulate a

conventional heat exchanger using Star CCM+ to

assess the validity of the model and the under-

lying assumptions. Figure 2 shows that the con-

figuration is based on the experiment conducted

by Batista et al. [24], where a fin-and-tube heat

exchanger was studied. The coolant used in the

experiment is water that flows through 38 cop-

per tubes which were attached to 260 aluminum

fins perpendicular to the flow of water. The heat

exchanger was placed in the test section of a

wind tunnel, which provided a steady flow of air.

Further details of the experimental setup are de-

scribed in [24]. Three different cases with varying air velocities are conducted ± the operating conditions are

summarized in table 1.

Table 2 A comparison between steady and unsteady state

analysis for an inlet air velocity of 0.36 m/s

Steady-state Unsteady

Simulation time 4 hr 20 min 13 hr 30 min

Air outlet temperature 39.36 oC 39.38 oC

First, two cases are carried out with an air velocity

of 0.36 m / s, one with a steady-state assumption

and one without. The purpose of these cases is to

assess whether the problem under consideration

is steady or unsteady. The grid for the case con-

sists of 2.48 million cells and y+ ≤ 5. The grid

is particularly refined near the tube and fins to re-

solve the high-temperature and velocity gradients.

A comparison of the air outlet temperature and the simulation times between the unstable solution (after 14

flow times) and the steady case is shown in table 2. Since the difference between the two cases is 0.05%,

for computational efficiency, the rest of the calculations in this paper are performed using the steady-state

assumption.

Figure 3a shows the distribution of the air temperature near the aluminum fin ± the air flows from left to right.

As can be seen, the air heats up as we move toward the right, indicating the transfer of energy to the cool air.

Figure 3b shows the temperature distribution at the outlet cross-sectional plane of the copper tube. Since the

air flows from left to right, we see higher temperatures in the clockwise direction in the copper tube as well as

water. Energy from water is transferred to the copper tube, where, through conduction, the heat is transferred

to the outer surface of the tube. On the outer surface of the tube, heat is either convected away by cold air

flowing over it or conducted to the aluminum fins, which in turn, also heat the air away from the copper tubes.

Table 3 summarizes the comparison between outlet air temperatures obtained from steady-state simulations

with inlet air velocities of 0.25, 0.36 and 0.46 m/s and experimental measurements. As can be noted from the

last column, our computations agree well with the measurements and accurately capture the flow physics and

heat transfer mechanisms.
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Table 3 Comparison of air temperature at the outlet between experiment [24] and present simulations

Air inlet velocity (m/s) Air outlet temperature

(oC) [24]

Air outlet temperature

(oC) - Present

Difference (%)

0.25 38.15 39.72 4.1%

0.36 38.07 39.36 3.4%

0.46 37.19 38.88 4.5%

Table 4 Operating conditions and physical properties of air and EGW used in the simulations.

Air EGW

Inlet temperature (oC) 55 80

Inlet velocity/flow rate 67 m/s 11 L/min
Density (kg/m3) 1.0759 1039.6

Dynamic viscosity (Pa− s) 1.98e-5 9.81e-4

Thermal conductivity (W/mK) 0.0282 0.3940

Heat Capacity (J/kg −K) 1007.7 3514.0

4. RESULTS

(a)

(b)

Fig. 3 Distribution of temperatures in (a) air and (b) water

for the validation case with air velocity of 0.36 m/s.

As mentioned before, the purpose of this pa-

per is to describe the development and evaluate

the accuracy of the machine-learned turbulence

model that is used in the TopOpt algorithm to

close equations 2 and 3, specifically, the terms

shown in expressions 5 and 6. In this section,

we will first describe the generation of data sets

to train the GP model, followed by the choice

of kernel functions and training in Section 4.2.

Finally, Section 4.3 evaluates the accuracy of

the model by using the turbulent viscosity pre-

dicted by the ML algorithm in a zero-equation

CFD calculation versus predictions from two-

equation k − ϵ-based ºtruth dataº at testing

points. The operating conditions and physical

properties of the fluids for all subsequent re-

sults presented in this paper are summarized in

table 4.

4.1 Generation

of data for the machine learning model

By varying different constraints, the TopOpt al-

gorithm designed four different types of heat

exchangers based on laminar flow conditions,

as shown in figure 4. The first design shown in

figure 4 (a) was optimized using a design space

of 10 in × 10 in × 10 in. The second shown

in figure 4 (b) was optimized using half the de-

sign space which is then mirrored to produce

the entire heat exchanger. Drawing inspiration
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Fig. 4 Types of organic heat exchanger designs, 1-4.

Fig. 5 Meshed domain for design 4.

from conventional heat exchangers, which typically feature multiple identical flow channels, the third design

in figure 4 (c) incorporates four flow channels. The optimization for this design type consisted of a domain

size 10 in × 2.5 in × 1.25 in, equivalent to half of a flow channel. The complete heat exchanger was then

generated by duplicating the result eight times. The fourth type of design was a unit cell, the objective function

being changed from maximizing the difference between the inlet and outlet EGW temperatures to maximizing

the energy density. This unit cell was then replicated 64 times to mirror the same frontal cross-section area

as the previous designs. Figure 4 (d) shows the unit cell design applied to a single channel. Further details of

the constraints that led to these designs can be found elsewhere [18]. In total, 10 designs belonging to one of

these four types were generated. Next, realizable k − ϵ-based calculations were conducted on each of these

designs using Star CCM+. The purpose was twofold: (1) to quantify the energy density (heat rejection/wet

mass) of each design and (2) to extract spatially averaged turbulent viscosity for each design. To ensure that

the velocity and thermal boundary layers were captured, y+ = 5 was maintained for each calculation, an

example of which is illustrated in figure 5. For example, the grid used for design 4 consists of 9.73 million

cells.

Figures 6 (b), (c) and (d) show the spatial distribution of air temperature, turbulent viscosity, µt, and gas-phase
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Table 5 Energy densities of designs shown in figure 4.

Design Energy Density

(kW/lbs)

conventional 0.7

1 0.24

2 0.37

3 1.66

4 2.82

Table 6 Comparison between true value and predicted value

True Value Predicted Value Error

0.0243 0.0240 1.26 %

0.0155 0.0144 6.9 %

velocity fields, respectively, for design 4. The spatially averaged µt is the variable of interest for the machine-

learned model. Table 5 summarizes the energy densities, Q = ṁcp(Tin − Tout) of the four representative

designs shown in figure 4. A total of ten designs were evaluated using this methodology and spatially averaged

turbulent viscosity is extracted for each design.

4.2 ML Training

In general, in any machine learning algorithm, one or more inputs yield an output. In the current scenario,

the TopOpt algorithm requires the turbulent viscosity value as it iterates to generate the design. Among many

inputs that could be used, we chose the surface density, defined as the ratio of the outer surface area to the

volume occupied by the heat exchanger, as the representative of the geometry as the input to the ML algorithm.

As mentioned in the previous paragraph, the turbulent viscosity and surface densities were collected for each

design.

Given this, the problem statement becomes: predict the turbulent viscosity given an area density. Note that

our data set is limited to 10 points, which is not conducive to neural network-based machine learning al-

gorithms that require hundreds, if not thousands, of data points. However, it is well known in the litera-

ture that Gaussian processes work well with smaller datasets [21], which was chosen for the current work.

Of the ten designs, eight were used to train the model and the remaining two were used as testing points.

Fig. 7 GP model predicting µt as a function of area density.

In this GP model, the kernel was defined

by (k1 + k2 + k3) ∗ k4, where k1 to k4
correspond to spline, linear, periodic, and

Brownian, respectively. Figure 7 shows

the result of the trained algorithm. The

vertical axis is the turbulent viscosity and

the horizontal axis is the surface density.

Table 6 shows the comparison between

the true value and the predicted value

by the model for the two testing points

(shown in red in figure 7). For the given

limited training data size, the model pre-

dicts turbulent viscosity with good accu-

racy. The GP model was then incorpo-

rated into the topology optimization code

which could now incorporate turbulence
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(a)

(b)

(c)

(d)

Fig. 6 Spatial distribution of (b) air temperature, (c) turbulent viscosity and (d) velocity at the mid-section

plane shown in (a).
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Table 7 Comparison of coolant and air outlet temperatures between the truth and GP-based models.

k − ϵ model GP Model Difference (%)

Air outlet (oC) 56.53 57.00 0.83

EGW Outlet 1 (oC) 65.25 65.02 0.35

EGW Outlet 2 (oC) 66.29 66.18 0.16

EGW Outlet 3 (oC) 67.13 67.16 0.04

EGW Outlet 4 (oC) 68.34 68.06 0.41

to resemble true conditions for the design space.

4.3 Model Validation

To validate the GP model, we conducted two simulations on a test design shown in figure 4 (c), one using

the realizable k − ϵ model that is treated as the ºtruthº data and the other using a zero-equation model where

the turbulent viscosity was predicted by the ML model based on the area density of the test design. There are

some challenges in incorporating a zero equation model to resolve complex turbulent flow features. However,

one must consider the convergence criteria of the TopOpt algorithm and the fact that the complexity increases

as we add more PDE’s to solve for each successive iteration of the process. Table 7 shows a comparison of

the temperatures at the four EGW outlets and the air outlet between the ºtruthº (k − ϵ) and the GP-informed

zero-equation predictions, showing excellent agreement. The corresponding temperature distribution is shown

in figure 8. Here, a loss of information is evident; however, the flow structures are qualitatively similar.

Fig. 8 Temperature distribution in the air domain at the mid-section plane.

5. CONCLUSIONS

In this study, a machine-

learned turbulence model

was developed to predict

turbulent viscosity as a

function of area density

for complex geometries.

Given the size of the data

set O(10), it was deter-

mined that Gaussian Pro-

cesses would be the most

appropriate model for

this purpose. An exper-

imental validation study

was conducted to show

that the relevant flow

features and mechanisms

from conjugate heat transfer were captured and that the simulations showed good agreement with the exper-

imental results. Heat exchanger designs were generated using topology optimization algorithms assuming

laminar flow. The designs were evaluated under turbulent flow conditions using the realizable k − ϵ model.

The Gaussian Process model designed from the aforementioned training data was evaluated using the zero

equation turbulence model to determine the accuracy of the machine-learned algorithm. Compared to the test

data, the GP model showed good agreement. The algorithm was incorporated into the topology optimization

code to generate designs of heat exchangers that represent real operating conditions.
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